

Reinforced Concrete Structural Design and Analysis of a Single Cell Box Culvert Using Manual Method

Engr. Akwenke O. Moses FNSE, FNICE, Ph.D

P. O. Box 2139 Warri

Submitted: 25-01-2021

Revised: 05-02-2021

Accepted: 08-02-2021

ABSTRACT: Box culvert is a hydraulic monolithic reinforced or non-reinforced concrete structure. ¹Culvert's classification by material is not limited to concrete but includes steel, alluminium, plastic, timber and high density polyethylene. Culverts permits the flow of water from through an inlet and an outlet under a normal roadway, railway. Because culverts main function is to accommodate and withstand various types of loads generated by traffic through human activities, soil fill, amongst others, this article is an exercise that deals with ³holistic manual analysis and design of a single cell box culvert through the consideration of effects of earth pressures, surcharge pressures, hydrostatic and excess hydrostatic internal pressure, uniformly distributed permanent and live loads (of self-weight of the critical element/component and vehicular loads). Abstractedly, the dept of fill is 1.6m, the thickness of top, bottom, vertical side walls, the wing walls and apron slab floor are all uniformly 0.25m. The single cell culvert length is 6m and constructed across an asphalt surface finished roadway. BS5400 part 1, BS8110 part 1 (1985/1977), ³Revnold and steelman's reinforced concrete designer's hand book are some of the codes and manuals used in the design and analysis of all the critical components to withstand maximum bending moment and shear force to specifications and standards. Summary of result of the manual design and analysis of the single cell culvert becomes main reinforcement bars: Y16mm0@200 c/c for all components except for apron slab and distribution bars of Y12mm0 @ 200 c/c.

Keywords: HA, HB, Axle, top, slab, bottom, walls, apron, hydrostatic, reinforcement.

I. INTRODUCTION

⁶A hydraulic structure that permits the flow of water from and through an inlet and an outlet which can be under a normal road, highway, railway or any flow obstructing elements/facility defines a culvert.

⁴Culverts are in many sizes and shapes such as box –like elliptical and circular round. Choice of shape and types is dependent on requirement such as limitations on upstream water, surface elevation, road way embankment height and requirement for hydraulic performance amongst others.

⁵In the structural design of culverts, load issues such as when the culvert is full of water and when the culvert is empty are considered. ³Considered also are surcharge loads, earth pressures, hydrostatic and excess hydrostatic internal pressures. ⁹Most important to be considered is the live load that will be passing through the culverts top (roof) slab. Other factors to be considered will include but not limited to the sizing (especially effective depth), ⁵dispersal of load through earth fill, co-efficient of safety and earth pressure factors.

^{10,7}The structural elements of a culvert such as top (roof) slab, bottom slab, the side vertical walls, wing walls, apron slab and head wall must be designed to withstand maximum bending moments and shear forces with adherence to relevant codes.

¹The aim of this article or presentation is to showcase the design of the structural elements of a box culvert on the bases of structural requirement. The design of this box culvert will not include hydraulic consideration and requirement.

This presentation main objective is the suitable structural design of a single cell box culvert across Obibi drive road project off Alaka Avenue, Etevie community, Ozoro, Delta State through the determination of the total permanent and live loads acting on the structural components members of the box culvert to enable/facilitate the design and subsequent determination of reinforcement bars for the single cell box culvert.

⁴Culverts are in various geometric shapes and types classification that includes box culvert, pipe culvert, pipe arch culvert, bridge culvert and arch culvert.

Box culverts are preferred and more widely used because of its outstanding merits over

the other types of culverts. This is because amongst other of its merits, it can cope with budget flows, situations and available headroom is limited. ^{1,5,7}Box culverts can also be designed to suit a particular site situation by reducing or increasing its size easily than will be done in the case of other types of culvert.

The culvert will be analyzed with respect to critical loading conditions. The ultimate limit state will be with respect to the collapse of the culvert's structural elements while the serviceability limit state will be with or in respect to condition beyond which concern for loss of utility or for public concern over cracks and other serviceability concerns.

Loads on culvert includes;

- i. Permanent loads of self-weight (dead loads), the superimposed dead loads, the horizontal earth pressure load, loads due to hydrostatic pressure, the dead loads as a result of buoyancy and differential settlement effects.
- ii. Vertical live loads of HA or HB which acts on the carriageway/highway and includes cycle track loading, footway loading, accidental wheel loading and as well as construction traffic. ¹¹A formula for loading that represent normal traffic is referred to as HA loading while HB loading represent an abnormal

vehicle unit loading(according to Vincent T. H. Chu's "A self-learning manual mastering different fields of civil Engineering Works (VC-Q-A-Method)".

iii. Horizontal live loads of surcharge, traction, temperature effects, parapet/head wall collusion, accidental skidding and centrifugal load.

In general concerning culvert loading, B5400: part 2 1978 contains the requirement for culvert loading. The above are also contained in ³Reinforced concrete design manual by Reynolds and Steelman's 1994 edition.

⁷The concept of type HA loads first came into awareness in the year 1945 while that of HB (highway bridges) loading was introduced in BS53 in the year 1954.

Type HA loads (normal traffic loading) covers vehicles up to 44 ton and are represented by uniformly distributed load with a knife edge load and:

- a. Covers more than one vehicle occupying the width of a lane.
- b. Covers overloading in normal vehicles
- c. Covers impact load that are induced when car wheel bounce as at when travelling across potholes.

1.	Culvert sizing:	2000mm x 2150mm single cell in-to-in with 250mm uniform		
		thickness of top slab, invert slab and walls with a total span of		
		6000mm		
2.	Location:	Km 0 + 0.00 at Obibi drive Off Alaka Avenue, Etevie		
		Community, Ozoro Delta State.		
3.	Relevant Design Code:	i. BS5400: Part 2 1978 (load specification)		
	_	ii. BS8110: Part 1: 1997 (Code of practice for design and		
		construction)		
		iii. Reinforced concrete designer's hand book (Reynold &		
		Steelman)		
4.	Soil Parametre:	Allowable bearing capacity; 200kN/m ²		
5.	Characteristic strength	(i) Concrete fcu: 25N/mm ²		
	material data:	(ii) Main steel bars (fy): 460N/mm ²		
		(iii) Distribution bars (fy): 460 N/mm ²		
6.	General Loading			
	Conditions			
А.	Dead load:			
	(i) Weight per m^2	(i) Weight of concrete: 24 kN/m ²		
		(ii) Weight of soil: 18 kN/m ²		
		(iii) Weight of asphalt: $23kN/m^2$		
		(iv) Weight of water: 10 kN/m ²		
		-		
	(ii) Dead load	(i) Self weight of culvert: 1.15		
	Values of partial factor	(ii) Earth fill (earth pressure): 1.50		
	of safety BS5400-1	Asphalt: 1.00		

TABLE 1: DESIGN INFORMATION

International Journal of Advances in Engineering and Management (IJAEM)Volume 3, Issue 1 Jan-Feb 2021, pp: 807-825www.ijaem.netISSN: 2395-5252

В	Imposed load	
	(i) Design HA	(i) HA: single wheel load of 100kN of square contact area
	loading combined with	of 300mm by 300mm of 1.1kN/mm ² effective pressure.
	design HB 45 units	(ii) HB: a four axle vehicle of 10kN per axle, with four
	loading	wheels equal spacing on each axle of 2.5kN per wheel of four
		wheel per axle of 45 units: HA (HB45)
	(ii) Imposed load	(i) HA vehicles (ULS) 1.50
	values of partial factor	(ii) HB vehicles (ULS) 1.30
	of safety	(SLS) 1.10

DESIGN OF BOX CULVERT

International Journal of Advances in Engineering and Management (IJAEM)Volume 3, Issue 1 Jan-Feb 2021, pp: 807-825www.ijaem.netISSN: 2395-5252

	LOADING		
	(a)	Dead load:	
	(i)	Top slab = 1.15 x 24 x 0.25	6.9kN/m ²
	(ii)	Bollous slab = 1.15 x 24 x 0.25	6.9 kN/m ²
	(iii)	Walls = 1.15 x 24 x 0.25 x 3 x 2.15	44.51 kN/m ²
	(iv)	Weight of Asphalt = 1.0 x 0.1 x 23	2.3 kN/m ²
	(v)	Weigh of fill = 1.5 x 1.6 x 18	43.2kN/m ²
		Total dead load	103.81kN/m ²
	(b)	Imposed load:	
BS5400 Part 2 6.2.5 6.2.6 6.4.1.5		Asphalt 1.2m 250 250 250 250 250 250 250 250	Cover depth >0.6m HA UDL/KEL not applicable 30 units of HB loading rules OR Wheel load dispersal on box culvert single 100kNHA
		Figure 2a: Wheel load dispersion on culvert	

BS5400 Part 1	wheel load wheel load the second sec			
625				
0.2.5	$A_{cT} = \sqrt{\frac{100 \times 10^{\circ}}{100}} = 302 \times 302$			
6.2.6				
6.4.1.5	2.15			
htt://strudrile.com				
	Figure 3: Stress due to HA vehicle,			
	(@ \int_{1}^{2} gradient. Dispersal area to the top slab of the culvert (Adsp): ∴ Adsp = $A_{rr} + 2 \times \left(\frac{F_{d}}{2}\right)$ = $302 + \left[2 \times \left(\frac{1600}{2}\right)\right]$ = $302 + 1600 = 1902 \times 1902$ (@ top slab thickness = 250 mm then neutral axis (F_{dea}) = 125 mm(F_{dea}) ∴ Dispersal width to neutral axis of culvert (W _{dep})	Actor = Dispersal area A _{CT} = Contact area		

		E E11
	$Inus \underset{\text{deg.}}{\text{M}} = A_{CT} + F_{d} + 2F_{dea}$	<u>р</u> ₄ = РШ
	= 302 + 1600 + 2(125)	depth
	= 2152mm	F.dea. =
	∴ wheel load (F,,) on dispersed area:	Neutral axis
	$F_{c} = \frac{100}{2.6 kN/m^2}$	is at
	²² 2.152 × 2.152	half <mark>F</mark> 4
htt://strudrile.com	CASE II: 45 units of HB Load (stress due to HB vehicle)	
	Wheel load = $45 \times \frac{10}{4} = 1125kN$	
	$A_{CT} = \sqrt{\frac{112500}{1.1}} = 320 \times 320mm$	
BS5400		
Part 2		
6.3.1		
6.3.2		
6.3.3		
Reynold T11	1 1800/6000 minimum 1 1800/	
	Figure 4: The configuration of HB wheel load	
	Fig 5: Stress due to HB vehicle	

I		
	I otal fill depth (Eat); For neutral axis = ½ top slab thickness	
	(250mm) provided the structure have no longitudinal joints.	
	$\mathbf{F}_{d\mathbf{Z}} = \mathbf{F}_{d} + \mathbf{F}_{dea}$	
	$= 1600 + \frac{250}{2} = 1600 + 125 = 1725 \text{mm}$	
	$(a) = \int_{a}^{a} gradient$	
	1	T44 =
	Transverse dispersal lines will overlap at a depth of:	Transverse
	$T_{44} = 1000 - 320$ (4 wheels on each axle at a spacing of	dispersal
	1000mm for HB loading figure 5) $\underline{T}_{44} \rightarrow \text{Transverse}$	dept
	dispersal depth <u>depth</u>	T=total
	= 680 mm < 1650 mm \rightarrow (ok, 4 wheels considered)	w = width
	\therefore Total width that an axle will dispersed (T_{wad}):	a = axle
	$\underline{\mathbf{T}}_{\text{tread}} = \mathbf{A}_{\text{CT}} + (\mathbf{n} - 1) \mathbf{S} + \mathbf{F}_{\text{d}} + \mathbf{F}_{\text{deal}}$	d = disperse
	Where:	n = number
	$T_{\text{wad}} = 320 + (4 - 1)1000 + 1600 + 2(125) = 5170$ mm	of axles
		s = spacing c/c of axle 250
	Or $T_{\text{tread}} = 3000 + 320 + \left(2 \times \frac{1600}{2}\right) + \left(2 \times \frac{250}{2}\right)$	
	= 5170mm (from figure 6)	
	@ <u></u> 2 gradient.	Ľ.,,=
		Longitudinal
	Longitudinal dispersal liens overlaps at a depth of;	dispersal
	Loss = 1800 – 320 (front and rear pair of axles are spaced at 18000)	dept
	= $1480 < 1650$ mm (ok, front and rear pair of axles are	
	considered)	
	$\therefore L_{44} = A_{cT} + (n-1)S + F_4 + 2F_{4-1} $ (Ldd = longitudinal)	
	condition of the state of the second country	

<u>г</u>	diam area I donth)	
	dispersal depth)	
	= 320 (z - 1) 1800 + 1600 + 2 (125)	
	= 320 + 1800 + 1600 + 250 = 3970mm	
	\therefore the axle load on dispersal area of top slab of culvert (F ₆₀);	
	$F_{ds} = \frac{N_W \times W_F}{N_F}$	$\underline{Nw} = number$
	A _e	of wheel
	$\Rightarrow F_{de} = \frac{8 \times 1125}{5.170 \times 3.970} = 43.85 kN / m^2 > 21.6 kN / m^2$	W_f = wheel load
	\Rightarrow 43.85 x 1.5 > 21.6 x 1.5	$A_d = dispersal$
	$= 65.78 \text{kN/m}^2 > 32.4 \text{kN/m}^2$	area
	Thus between case I and case II, case II is critical @	$\xi_{da} = axle load$
	43.85kN/m ² > 21.6kN/m ²	10r r = 1080 d = dispersal a =
		axle
BS5400	∴ UDL acting on top of the culvert that is appropriate for the	
Part 2	design = 43.85 kN/m ²	
6.2.7	-	
	ACTIVE EARTH PRESSURE ON WALLS	
	Let active earth pressure = K	
BS54000	$k = \frac{1 - Sin\theta}{1 + Gamma - 2}$, $\theta = 30^{\circ}$ (angle of slope of bank of retained	
Part 2	1+ Cost	
5.81	material)	
Reynold T16	K=0.333	
	$h_2 \frac{Q_1}{Q_2}$	
	rigure of Active pressure on ventical wan of culvents	

	$O_2 = Kh_2 O_1 .5 = 0.33 \times 3.75 \times 18 \times 1.5 = 33.4 kN/m^2$	
	$O_{\rm r} = {\rm Kh} \left[1 \right] \left[5 = 0.33 \times 1.6 \times 18 \times 1.5 = 14.3 {\rm kN/m^2} \right]$	
	UNDOSTATIC DESSURE ON INVERT ELOOP	
	$a = 9.801 \text{kN/m}^3 - 10 \text{kN/m}^3$	
	$p_{\rm w} = 9.801 {\rm ki v m}^2 \simeq 10 {\rm ki v m}^2$	
	h ₂ = 2.15m (@ a maximum flooring of 2.15m at peak period	
	that culvert is full of water)	
	$\therefore P_{HY} = \underline{P}_{HY} \Longrightarrow \text{hydrostatic pressure}$	
	$\Rightarrow \rho hy = \rho w H = 10 \text{ x } 2.15 = 21.5 \text{ kN/m}^2$	
	SURCHARGE PRESSURE ON CULVERT WALLS	$Q_3 = surcharge$
		pressure
	9.F	$F_{da} = load$
		dispersal due
		to axie or
		walls
	┈╸	WFL = weight
	Figure 7: Surcharge pressure on walls	of fill on walls
	$Q_3 = K(F_{da} + N_{FL})$	
	= 0.33 x (43.85 + 43.2)	
	$\therefore Q_3 = 0.33 (43.85 \times 1.5) + 43.2$	
	$= 108.0 kN/m^{2}$	
· <u> </u>	CHECK FOR ADEQUACY OF SOIL BEARING	J
	CAPACITY	
	i. Allowable soil bearing capacity = 200 KN/m ²	
	ii. Total design load on the soil = Dead load + imposed	
	load	
	= 11.35 x 103.81 + 43.85 x 1.5	
	= 146.1435 + 65.775	
	$= 206 \text{KN}/\text{m}^2 > 200 \text{KN}/\text{m}^2$	

	Figure 9: culverts (sizes) measurement			
	From figure 9, $k = \frac{h}{l} \left(\frac{hs}{hw}\right)^2 = \frac{2.4}{2.25} \left(\frac{25}{25}\right)^2 = 1.1$			
Reynold and steel	K coefficient values computation			
man T187 page	From K = 1.1;			
473	(1) $ki = k + 1 = 2.1$			
	(2) $k2 = k + 2 = 3.1$			
	(3) $k3 = k + 3 = 4.1$			
	(4) $k4 = 4k + 9 = 13.4$			
	(5) $k5 = 2k + 3 = 5.2$			
	(6) $k6 = k = 6 = 7.1$			
	(7) $\mathbf{k}7 = 2\mathbf{k} + 7 = 9.2$			
	(8) $k8 = 3k + 8 = 11.3$			
Reynold & steelman T197 page 473	Bending moments 1. UDL on top slab, $Q = 118.8 \text{ kN} \text{ m}^2$ Moment due to UDL load on top slab For $\vec{M}_A = \vec{M}_C = \frac{QL^2}{12k_1} = \frac{118.8 \times 2.25^2}{12 \times 2.1} = -24KN - m$ 2. Weight on bottom/invert slab (and the water in the culvert) are directly carried by the ground underneath the invert slab \therefore moment due to load on bottom slab = 0kN-m 3. Moment as a result of weight of vertical walls i. $Q_1 = \frac{2G}{1 + h_W} = \frac{2 \times 44.51}{1.25} = 71.2kn/m^2$ ii. Moment due to Q_1 in 3(i) $\frac{h_X^{*x}}{M} = \frac{Q_1L^{2k}}{1.2k_1k_2} = \frac{71.2 \times 2.5 \times 1.1}{12 \times 2.1 \times 4.1} = 1.71KN - m$			

4. moment as a result of earth pressure on walls:	
$Q_2 = 33.4 \text{KN}/\text{m}^2$	
$\vec{M}_{A}^{*} = \frac{Q2 \ h^{2} k k_{7}}{60 k_{1} k_{3}} = \frac{33.4 \times 240^{2} \times 1.1 \times 9.2}{60 \times 1.1 \times 4.1}$	
= - 7.1KNm	
$\dot{M}_{c} = \frac{k_{s}}{k_{z}} MA = \frac{11.3 \times 7.1}{9.2} 8.7 KN - m$	
5. Moments due to earth surcharge pressure on vertical wall	
Q ₃ =109KN/m2	
$\vec{M}_{A} = \vec{M}_{C} = \frac{Q_{3}h^{2}k}{12ki} = \frac{109x2.46^{2}x1.1}{12x2.1} = -27KN - m$	
6. Moment due to hydrostatic internal pressure; phy. =	
hydrostatic pressure = 21.5kn/m2 =	
$\overset{+ux}{M}_{A} = \frac{phy h^{2} kk_{2}}{60k_{1}k_{2}} = \frac{21.5 x 2.40^{2} x 1.1 x 2.1}{60 x 2.1 x 3.1} = 0.73$	
$\tilde{M}_{c} = \frac{k_{s}}{k_{\gamma}} MA = \frac{11.3}{9.2} \times 0.73 = 0.90 KN - m$	
7. Moment due to excess hydrostatic internal pressure	
$\underline{\mathbf{Phy}} = \underline{\mathbf{Q}}_{\mathbf{k}} = 21.5 \mathrm{kN/m^2}$	
$\dot{M}_{A} =$	
$\frac{Qlp(h^2 \ kk + L^2 k_1)}{12k_1 \ k_2} = 21.5 \left[\frac{2.40^2 \ x1.1x4.1) + (2^2 \ x4.1)}{12x2.1x4.1}\right] = 9.21kN - m$	
$\hat{M}_{c}^{*} = \frac{\mathcal{Q}_{\oplus}K(h^{2}k_{z} - L^{2})}{12k_{z}k_{z}} = \frac{21.5 \times 1.1[2.45 \times 4.1 - 2^{2}]}{12 \times 2.1 \times 4.1}$	
= 4.44kN-m	

TABLE 2: BENDING SUPPORT MOMENTS PER UNIT LENGTH OF CULVERT SUMMARY

S/N	Loading	Ma=MB	Mc = MD	Remarks
1.	UDL on top	-24KN-m	-24KN-m	$M_{A} = M_{B} = M_{C} = M_{8}$
	slab:			
	118.18KN/m ²			
2.	Weight of walls	+1.71KN-m	-8.1KN-m	$M_A = M_B$
	on culvert:			$M_{\rm C} = M_{\rm D}$
	71.2KN/m ²			
3.	Earth pressure	-7.1KN-m	+8.7KN-m	$M_A = M_B$
	on walls			$M_{\rm C} = M_{\rm D}$
	33.4KN/m ²			
4.	Earth surcharge	-27KN-m	-27KN-m	$M_A = M_B = M_C = M_D$
	pressure on			
	walls 109K/m ²			
	Total if culvert	-56.39KN-m	-50.4KN-m	Culver is without water
	is empty			

5.	Hydrostatic internal pressure: 21.5KN/m ²	+0.73KN-m	+0.98KN-m	
6.	Excess hydrostatic internal pressure 21.5KN/m ²	+9.21KN-m	+4.44KN-m	
	Total if culvert is full	-46.46KN-m	-44.98KN-m	Culvert is full with water

MAXIMUM SPANS MOMENTS

Span moment will be computed for AB, CD, AC, and BD

Mosely, Bungey and hulse 7 th edition (a) $R_A = \frac{wl}{2} = \frac{118.18x 2.25}{2} = 132.96 KN$ $R_B = 132.96 kN$ (b) Distance to zero shear $\Rightarrow \chi$ $\chi = \frac{R_A}{w} = \frac{132.96}{118.18} = 1.13m$ (c) maximum span moment (M _{max}) will occur at zero shear,
Bungey and hulse 7^{th} (a) $R_A = \frac{1}{2} = \frac{132.96 \text{KN}}{2}$ $R_B = 132.96 \text{kN}$ (b) Distance to zero shear $\Rightarrow \chi$ $\chi = \frac{R_A}{W} = \frac{132.96}{118.18} = 1.13m$ (c) maximum span moment (M _{max}) will occur at zero shear,
hulse 7^{m} R _B = 132.96kN (b) Distance to zero shear $\Rightarrow \chi$ $\chi = \frac{R_A}{W} = \frac{132.96}{118.18} = 1.13m$ (c) maximum span moment (M _{max}) will occur at zero shear,
edition (b) Distance to zero shear $\Rightarrow \chi$ $\chi = \frac{R_A}{w} = \frac{132.96}{118.18} = 1.13m$ (c) maximum span moment (M _{max}) will occur at zero shear,
(b) Distance to zero shear $\Rightarrow \chi$ $\chi = \frac{R_A}{W} = \frac{132.96}{118.18} = 1.13m$ (c) maximum span moment (M _{max}) will occur at zero shear,
$\chi = \frac{K_A}{w} = \frac{132.90}{118.18} = 1.13m$ (c) maximum span moment (M _{max}) will occur at zero shear,
$w \qquad 118.18$ (c) maximum span moment (M _{max}) will occur at zero shear,
(c) maximum span moment (M_{max}) will occur at zero shear,
(c) maximum span moment (M_{max}) will occur at zero snear,
I hus at $\chi = 1.13$ m,
(i) M $cm = \frac{R^2_A}{M} + M$ (culvert is full)
$\frac{(1) W_{\text{max(full)}}}{2w} = \frac{2w}{w}$
132.96^2
$=\frac{1}{2 r 118 18} + (-46.39)$
222110.10
$-\frac{132.96^2}{1000} + (-46.46) - 28.33KN$ m
$-\frac{1}{2x118.18}$ + (-40.46) - 28.35KN - m
(ii)
132.96^2
$M_{max(empty)} = \frac{132.96}{2.110.10} + (-56.36) = 18.4KN (culvertisempty)$
2 <i>x</i> 118.18
- 50.09kNm - 50.09kNm (culvert is empty)
- 41.8kNm
$A = \frac{118.8 \text{kN/m^2}}{\text{B}}$
Figure 10: span AB maximum moment
(ii) maximum movement on span CD
(a) $\frac{Wl}{R_{o}} = \frac{Wl}{169.6 \times 2.25} = 190.8 k N = R$
$\frac{1}{2} - \frac{1}{2} - \frac{1}$
(b) Distance to zero shear \Rightarrow x
$R_{\rm C} = 190.8$ 1.12
$x = \frac{1}{w} = \frac{1}{1696} = 1.15m$
W 102.0

ert	Moment (kN-m)		$=\frac{M}{bd^2 F_{cu}}$		As		Asreq	=	As
pone					$Z = d \left[0.5 + \sqrt{0} \right] \frac{M}{0.87.677}$			provided	
					ĹV		0.87 југ.		
	Support	Mids	Supp	Mids	supp	Midsp	suppor	Mids	
		pan	ort	pan	ort	an	t	pan	
slab	-46.46	28.3	0.05		181		641		Y16 mmθ
		3	1						@ 200 c/c
ert is									1010mm ²
	-56.39	18.4							
ert is									
ty									
om	-44.98	60.9		0.07		177		850	Y16 mmθ
(i)									@ 150 c/c
	slab ert is ert is ty (i)	slab -46.46 ert is -56.39 ert is ty iom -44.98 (i)	pone Support Mids pan slab -46.46 28.3 ert is -56.39 18.4 ert is ty -56.39 60.9 (i) -44.98 60.9	pone Support Mids Supp Support Mids Supp pan ort slab -46.46 28.3 0.05 a 1 ert is -56.39 18.4 ty -44.98 60.9 (i) -44.98 60.9	pone $= \frac{M}{bd^2 F_{cu}}$ Support Mids Supp Mids pan ort pan slab -46.46 28.3 0.05 ert is -56.39 18.4 -56.39 18.	pone $\begin{bmatrix} M \\ bd^2 F_{cu} \end{bmatrix} = \frac{M}{bd^2 F_{cu}} \qquad Z = d$ $\begin{bmatrix} Support & Mids & Supp & Mids & supp \\ pan & ort & pan & ort \\ slab & -46.46 & 28.3 & 0.05 & 181 \\ stab & -46.46 & 28.3 & 1 & 181 \\ ert is & & 1 & 181 \\ for the set is & 18.4 & 181 \\ for the set is & 18.4 & 181 \\ for the set is & 18.4 & 181 \\ for the set is & 18.4 & 181 \\ for the set is & 18.4 & 181 \\ for the set is & 18.4 & 181 \\ for the set is & 18.4 & 181 \\ for the set is & 18.4 & 181 \\ for the set is & 18.4 & 181 \\ for the set is & 18.4 & 181 \\ for the set is & 18.4 & 181 \\ for the set is & 18.4 & 181 \\ for the set is & 18.4 & 181 \\ for the set is & 18.4 & 181 \\ for the set is \\ for the set is & 181 \\ for the set is \\ f$	pone Image: Market (d. 1.4) Image: Market (d. 1.4) <thimage: (d.="" 1.4)<="" market="" th=""> Image: Market (d. 1.4) Image: Market (d. 1</thimage:>	pone Infinite (d - d -) Infinite (d - d -) <thinfinite (d="" -="" -)<="" d="" th=""> <thinfinite (d="" -="" -)<="" d="" th=""></thinfinite></thinfinite>	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

TABLE 3: DESIGN RESULT SUMMARY

	culvert is full (ii) culvert is empty	-50.4	56.9 3	0.05 6						1340mm ²	
3.	Side walls weight (i) culvert is full	-46.46	-5.57								
	(ii) culverts is empty	-56.39	-15.6								
4.	Earth pressure on walls (i) full (ii)	-46.46	-								
	culvert is	-56.39	-								
5.	Earth	44.48	-								_
	surcharg e pressure	56.38									
6.	Hydrasti c pressure internal pressure	-44.98	-							Y10 mm6 @ 200 c/c 393 mm ²)
7.	Excess hydrastic internal	-44.98 -50.4	-								
8.	Wing	-	20.5	0.02		186		276			
	Apron slab	-	27	2	0.03	184		367		Y12 mm6 @ 200 c/c 566 mm ²))
9.	Distributi on bars		Area of steel = 0.13% bh = Y10 r $0.13 \times 190 \times 1000$ = 247mm ² 100 393 m						Y10 mm@ @ 200 c/c 393 mm ²) >	
	Mosley Bungey & hulse table 6.10	CHECKING FOR SAFETY OF THE DESIGN (a) Check span – effective dept ratio: The steel ratio ρ , is defined as; $\rho = \frac{100A sreq}{bd}$ When $\rho > 1.5\%$: the level of concrete stress under serviceability condition is highly stressed When $\rho = 0.5\%$: the level of concrete stress under serviceability									
		condition is lightly stressed									

	Hence $\rho = \frac{100 \ x850}{1000 \ x190} = 0.447 \ \simeq 0.5\%$ (hence ρ is lightly
	stressed and >0.13% minimum ok)
	For $fy = 460$ is < 500
	Thus basic span – effective dept ratio = $24 \times \frac{500}{460} = 26$
	(i) $actual = \frac{Span}{effective \ dept} = \frac{2250}{190} = 11.84$
	$\frac{Span}{eff.dept} \Rightarrow basic\ ratio \times \frac{Asprov}{Asrq}$
	$= 26 \times \frac{1010}{850} = 26 \times 1.2 = 31.2 \times 11.84, ok$
	Hence
	(ii) $\frac{Allowable span}{effective dept} = 31.2 > \frac{actual span}{effective} = 11.84$
	:. effective dept = 190mm is adequate and acceptable
B58001	CHECK FOR DEFLECTION
Part 1·3 4 4 4(For deflection check: modification factor (M _f) = $\frac{0.55 + 477 - fs}{2.0} \le 2.0$
b)	$120(0.9 + \frac{M}{bd^2})$
	But $fs = \frac{2}{3}$ fy $\frac{Asrq}{As \ prov} (\frac{1}{\beta_1}) \beta_1 = 1$ (where redistribution is not
	required
	$M_{\rm f} = \frac{0.55 + 477 - 258.1}{120(0.9 + 1.7)} = \frac{219.55}{315} = 0.7 < 2.0, ok$
	From $M_F = 0.7$ and
	Basic span – effective dept ratio = 26
	$\therefore \text{ limiting } M_F \text{ value} = 0.7 \text{ x } 26 = 18.2$ But:
	Actual $\frac{span}{effective \ dept}$ Value $\frac{2250}{190} = 11.84 < 18.2$
	Thus limiting value > actual value: 18.2 > 11.84, ok And
	d required = $\frac{span}{2 x \frac{span}{aff \ dant}} ratio = \frac{2250}{2 \times 26} = 43.3 mm < 190 mm \ ok$
	∴ deflection check is satisfied ok
Mosaly	(C) CHECK EOD SHEAD DEOLIDEMENT
Bungev	For V_n = the ultimate shear force
Hulse	V_s = the shear stress (shear reinforcement)
B58110 –	$V = V_s$
1:1997	$\mathbf{v}_{u} = \frac{1}{bd}$

Clause	V_c = ultimate concrete shear resistance	
3:4:5.12	100Asp	
B58110-	$V_c = \frac{1}{1} \frac{1}{1$	
1:1985	bd	
Clause	$V_u < V_c$, shear reinforcement not required	
3.4.4.4	$V_{u} = \frac{V_{s}}{bd} = \frac{190.8}{1000 \ x190} = 0.001$	
	$Vc = \frac{100 \ x \ 1010}{1000 \ x \ 190} = 0.53 > V_C = 0.001$	
	\therefore shear reinforcement is not required (V _u – V _c , ok)	

CONSTRUCTION OF CULVERTS

¹Service life of culverts should equal the service life of the highway hence a culvert should be designed and constructed to equal the service life of the structure it is serving.

There are reasons why culverts can ^{1,7,9}fail, reasons such as poor or no maintenance, environmental conditions, improper and nonengineering compliance during construction and structural failure leading to collapse or erosion. Therefore, to avoid and prevent failure, accurate engineering design and construction methods consideration should be a priority.

¹Economic analysis and consideration in the design and construction of culvert include an economic analysis such as construction cost factors amongst others.

Culvert location should be an economical and effective need for usage. Location must be where construction is convenient for construction and in a location where required gradient must be achieved.

BENEFIT TO HUMANITY

^{1,9,7}Culvert functions range from hydraulic and structural safety performance such as provision of cross drainage for stream channel, flood plain relief drainage during flood periods, and nonhydraulic function such as acting as a crossing structure for humans/animal traffic as in pedestrian crossing, vehicles and rails crossing and cow and other animal's crossing. ^{7, 1}These functions of culvert benefit human in decreasing traffic interruption period as a result of road route flooding including the increasing confidence of safe driving.

II. CONCLUSION AND RECOMMENDATION

The dimension of the culvert were chosen to suit its location on site and is designed as a single cell with a total length of 6m and a total width of 2m in-to-in, 2.25m centre to centre span with its vertical side walls being 2.4m centre to centre but with in-to-in 2.15m height. The thickness of the culvert is 0.25m for all its structural element members. The single cell box culvert was analysed and designed for the maximum bending moment and shear force in each structural element members. of the The reinforcement provided are: Y16mm0 @ 200 centre-centre for top slab, bottom slab, wing walls and vertical side walls. Y12mm0 @ 200 c/c for apron slab floor and distribution bars. The results were checked for;

- 1. Span-effective depth ratio to ascertain adequacy of effective depth,
- 2. Modification factor to confirm deflections check is satisfied and
- 3. Shear force, to establish whether there is need for shear reinforcement.

This treatise also discussed requirements for box culvert construction.

In using the manual computation method, the various codes for reinforced concrete design were made use of (such as BS5400, BS8110) including other relevant design manuals such as Reynold and Steelman.

Based on the accurate/precise results using manual calculation for maximum bending moment, shear force and reinforcement bars, it is recommended that any engineer that will opt for software analysis must be experienced in manual computation of the analysis and design for maximum bending moment and shear force because it is what you feed into the computer that will bring expected result.

III. CONTRIBUTION TO KNOWLEDGE

- 1. The developed unique approach use to present results of analysis and design for Bending Moments, shear forces and reinforcements as shown in table 2 and table 3 is a new concept researchers, practicing engineers and students will find useful and thereby contributing to knowledge.
- 2. The manual method of designing a culvert as it is done in this article is new to many engineers. Therefore, this work will act as a reference bench work for literature review, hence becoming a document that will continuously contribute to knowledge.
- 3. This work has contributed to knowledge by the awareness this work has created for the need of manual approach method in the analysis and design of box culvert.
- 4. This study for the first time ever has provided manual method of analyzing, computing and designing supports, maximum bending span

moments, shear forces and reinforcement bars model options for civil engineering works.

5. There is a revelation of previously latent issues in an otherwise known and established problem as is clearly demonstrated in the use of tables to present results and in the method for the analysis of HA and HB loads.

REFERENCES

- A. M. Mohammed (2018); Design of a Box Culvert: Re public of Iran, Al-mansor University College, Civil Engineering Department.
- [2]. B. Mosley, J. Bungey, R. Hulse; Reinforced Concrete Design (2014) Book Power (formely ELST) with Palgrave Macmichorn Seventh Edition (2014).
- [3]. C. E. Reynolds, J. C Steedman; Reinforced Concrete Designer's Handbook (Ninth edition, 1994); A view point publications.
- [4]. https//civiltoday.com/construction/bridge/11 6-typesofculvert<u>http://structvile.com</u>
- [5]. P. A. Creamer (2007) "Culvert Hydraulics; Basic Principle", Profromonal Development Services (FDF), COWTECH Bridge Solutions Inc., Ohio
- [6]. P. L. Krishna, K. Rajasekhar; Analysis and design of Box Culvert (2018): International Journal of Science Technology & Engineering (IJSTE) Volume 4, Issue 10.
- [7]. Relevant Design Codes: BS5400 Part 2 1978, BS8119 Part 1.
- [8]. R. Patel, S. Jamle (2019); Analysis and Design of Box Culvert; A Manual Approach. International Journla of Advanced Engineering Research and Science (IJAERS) volume 6, Issue 3.
- [9]. Samaila Consultants, Consulting Engineers & Partners: <u>https://www.scribd.com</u>
- [10]. V. T. H. Chu; A self-learning manual mastering different fields of civil engineering works; VC-Q-A-Method.

International Journal of Advances in Engineering and Management ISSN: 2395-5252

IJAEM

Volume: 03

Issue: 01

DOI: 10.35629/5252

www.ijaem.net

Email id: ijaem.paper@gmail.com